반응형
gprof의 경우에 실행 시간이 너무 작은 경우, 계산이 안되는 것 같기도 합니다.[^1]
[^1]: 정확한 정보는 아닙니다.
다음은 제가 대학원시절 짠 예제코드입니다. 적당히 함수도 있고 해서 사용하기 좋습니다.
2D lattice에서 퍼콜레이션이 일어나는지 확인하는 코드입니다.
L size = 64, Ensemble = 50 인데 실행시간은 대략 10초정도로 gprof결과를 보기 적절한 실행시간으로 조절했습니다.
참고하세요 ^_^
script
g++ 2d_percolation.c mt19937ar.c -pg -o example.out
chmod 755 example.out
gprof example.out > gprof.log
Result
Flat profile:
Each sample counts as 0.01 seconds.
% cumulative self self total
time seconds seconds calls ms/call ms/call name
51.04 1.02 1.02 288629683 0.00 0.00 findroot(int, int*)
49.04 2.00 0.98 50 19.62 40.03 percolate(int*, int (*) [4], int*, int (*) [4096])
0.00 2.00 0.00 204800 0.00 0.00 genrand_int32()
0.00 2.00 0.00 204800 0.00 0.00 genrand_real2()
0.00 2.00 0.00 50 0.00 0.00 permutation(int*, int (*) [4], int*)
0.00 2.00 0.00 1 0.00 0.00 boundaries(int*, int (*) [4], int*)
0.00 2.00 0.00 1 0.00 0.00 init_genrand(unsigned long)
% the percentage of the total running time of the
time program used by this function.
cumulative a running sum of the number of seconds accounted
seconds for by this function and those listed above it.
self the number of seconds accounted for by this
seconds function alone. This is the major sort for this
listing.
calls the number of times this function was invoked, if
this function is profiled, else blank.
self the average number of milliseconds spent in this
ms/call function per call, if this function is profiled,
else blank.
total the average number of milliseconds spent in this
ms/call function and its descendents per call, if this
function is profiled, else blank.
name the name of the function. This is the minor sort
for this listing. The index shows the location of
the function in the gprof listing. If the index is
in parenthesis it shows where it would appear in
the gprof listing if it were to be printed.
Copyright (C) 2012-2018 Free Software Foundation, Inc.
Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved.
Call graph (explanation follows)
granularity: each sample hit covers 2 byte(s) for 0.50% of 2.00 seconds
index % time self children called name
<spontaneous>
[1] 100.0 0.00 2.00 main [1]
0.98 1.02 50/50 percolate(int*, int (*) [4], int*, int (*) [4096]) [2]
0.00 0.00 50/50 permutation(int*, int (*) [4], int*) [12]
0.00 0.00 1/1 init_genrand(unsigned long) [14]
0.00 0.00 1/1 boundaries(int*, int (*) [4], int*) [13]
-----------------------------------------------
0.98 1.02 50/50 main [1]
[2] 100.0 0.98 1.02 50 percolate(int*, int (*) [4], int*, int (*) [4096]) [2]
1.02 0.00 288629683/288629683 findroot(int, int*) [3]
-----------------------------------------------
235814316 findroot(int, int*) [3]
1.02 0.00 288629683/288629683 percolate(int*, int (*) [4], int*, int (*) [4096]) [2]
[3] 51.0 1.02 0.00 288629683+235814316 findroot(int, int*) [3]
235814316 findroot(int, int*) [3]
-----------------------------------------------
0.00 0.00 204800/204800 genrand_real2() [11]
[10] 0.0 0.00 0.00 204800 genrand_int32() [10]
-----------------------------------------------
0.00 0.00 204800/204800 permutation(int*, int (*) [4], int*) [12]
[11] 0.0 0.00 0.00 204800 genrand_real2() [11]
0.00 0.00 204800/204800 genrand_int32() [10]
-----------------------------------------------
0.00 0.00 50/50 main [1]
[12] 0.0 0.00 0.00 50 permutation(int*, int (*) [4], int*) [12]
0.00 0.00 204800/204800 genrand_real2() [11]
-----------------------------------------------
0.00 0.00 1/1 main [1]
[13] 0.0 0.00 0.00 1 boundaries(int*, int (*) [4], int*) [13]
-----------------------------------------------
0.00 0.00 1/1 main [1]
[14] 0.0 0.00 0.00 1 init_genrand(unsigned long) [14]
-----------------------------------------------
This table describes the call tree of the program, and was sorted by
the total amount of time spent in each function and its children.
Each entry in this table consists of several lines. The line with the
index number at the left hand margin lists the current function.
The lines above it list the functions that called this function,
and the lines below it list the functions this one called.
This line lists:
index A unique number given to each element of the table.
Index numbers are sorted numerically.
The index number is printed next to every function name so
it is easier to look up where the function is in the table.
% time This is the percentage of the `total' time that was spent
in this function and its children. Note that due to
different viewpoints, functions excluded by options, etc,
these numbers will NOT add up to 100%.
self This is the total amount of time spent in this function.
children This is the total amount of time propagated into this
function by its children.
called This is the number of times the function was called.
If the function called itself recursively, the number
only includes non-recursive calls, and is followed by
a `+' and the number of recursive calls.
name The name of the current function. The index number is
printed after it. If the function is a member of a
cycle, the cycle number is printed between the
function's name and the index number.
For the function's parents, the fields have the following meanings:
self This is the amount of time that was propagated directly
from the function into this parent.
children This is the amount of time that was propagated from
the function's children into this parent.
called This is the number of times this parent called the
function `/' the total number of times the function
was called. Recursive calls to the function are not
included in the number after the `/'.
name This is the name of the parent. The parent's index
number is printed after it. If the parent is a
member of a cycle, the cycle number is printed between
the name and the index number.
If the parents of the function cannot be determined, the word
`<spontaneous>' is printed in the `name' field, and all the other
fields are blank.
For the function's children, the fields have the following meanings:
self This is the amount of time that was propagated directly
from the child into the function.
children This is the amount of time that was propagated from the
child's children to the function.
called This is the number of times the function called
this child `/' the total number of times the child
was called. Recursive calls by the child are not
listed in the number after the `/'.
name This is the name of the child. The child's index
number is printed after it. If the child is a
member of a cycle, the cycle number is printed
between the name and the index number.
If there are any cycles (circles) in the call graph, there is an
entry for the cycle-as-a-whole. This entry shows who called the
cycle (as parents) and the members of the cycle (as children.)
The `+' recursive calls entry shows the number of function calls that
were internal to the cycle, and the calls entry for each member shows,
for that member, how many times it was called from other members of
the cycle.
Copyright (C) 2012-2018 Free Software Foundation, Inc.
Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved.
Index by function name
[13] boundaries(int*, int (*) [4], int*) [10] genrand_int32() [2] percolate(int*, int (*) [4], int*, int (*) [4096])
[12] permutation(int*, int (*) [4], int*) [11] genrand_real2()
[14] init_genrand(unsigned long) [3] findroot(int, int*)
2d_percolation.c
#include <stdio.h>
#include <time.h>
#include <stdlib.h>
#define L 64
#define N (L*L)
#define EMPTY -N-1
#define ENS 50
void init_genrand(unsigned long);
double genrand_real2(void);
void boundaries(int ptr[],int nn[][4], int order[]);
void permutation(int ptr[],int nn[][4], int order[]);
void percolate(int ptr[],int nn[][4], int order[],int pp[][N]);
int findroot(int i,int ptr[]);
int main(void){
int ptr[N]; // Array of pointer (group seed or state)
int nn[N][4]; // Nearest Neighbor
int order[N]; // Occupation order
int pp[4][N];
init_genrand(time(NULL));
for(int i=0;i<N;i++) pp[0][i]=pp[1][i]=pp[2][i]=pp[3][i]=0;
boundaries(ptr,nn,order);
for(int e=0;e<ENS;e++){
permutation(ptr,nn,order);
percolate(ptr,nn,order,pp);
}
for(int i=0;i<N;i++){
printf("%d\t%f\t",i,i*1.0/N);
for(int j=0; j<4; j++) printf("%f\t",pp[j][i]*1./ENS);
printf("\n");
}
/*
for(int i=0;i<L;i++){
for(int j=0;j<L;j++) printf(" %5d",ptr[L*i+j]);
printf("\n");}*/
return 0;
}
void boundaries(int ptr[],int nn[][4], int order[]){
for(int i=0; i<N; i++){
nn[i][0]=(i+1)%N; //right
nn[i][1]=(i+N-1)%N; //left
nn[i][2]=(i+L)%N; //down
nn[i][3]=(i+N-L)%N; //up
if (i%L==0) nn[i][1]=i+L-1; // i is end of left
if ((i+1)%L==0) nn[i][0]=i-L+1; // i is end of rignt
}}
void permutation(int ptr[],int nn[][4], int order[]){ // occupy process
int i,j;
int temp;
for(i=0;i<N;i++) order[i]=i;
for(i=0;i<N;i++){
j=i+(N-i)*genrand_real2();
temp=order[i];
order[i]=order[j];
order[j]=temp;
}
}
void percolate(int ptr[],int nn[][4], int order[],int pp[][N]){
int i,j;
int s1,s2;
int r1,r2;
int big=0;
for(i=0;i<N;i++) ptr[i] = EMPTY ;
for(i=0;i<N;i++){
r1 = s1 = order[i];
ptr[s1] = -1;
for(j=0;j<4;j++){
s2 = nn[s1][j];
if(ptr[s2] != EMPTY ){
r2 = findroot(s2,ptr);
if(r2!=r1){
if(ptr[r1]>ptr[r2]){
ptr[r2] += ptr[r1];
ptr[r1] = r2;
r1 = r2;
}
else{
ptr[r1] += ptr[r2];
ptr[r2] = r1;
}
if(-ptr[r1]>big) big = -ptr[r1];
}}}
//printf("%i\t%i\n",i+1,big);
int vp,hp;
for(j=0;j<N;j+=L){//horizontal percolation
if(ptr[j]!=EMPTY){
int temp;
temp = findroot(j,ptr);
hp=1;
int k=hp;
while(k==hp){
for(k=hp;k<N;k+=L){
int temp2;
if(ptr[k]!=EMPTY){
temp2 = findroot(k,ptr);
if(temp==temp2) k=2*N;
}}
if(k==(2*N+L)){
hp++;
k=hp;
}
if(hp==L){
hp=-1;
j=N;
}}}}
for(j=0;j<L;j++){//vertical percolation
if(ptr[j]!=EMPTY){
int temp;
temp = findroot(j,ptr);
vp=1;
int k=vp;
while(k==vp){
for(k=vp*L;k<(vp+1)*L;k++){
int temp2;
if(ptr[k]!=EMPTY){
temp2 = findroot(k,ptr);
if(temp==temp2) k=2*N;
}}
if(k==(2*N+1)){
vp++;
k=vp;
}
if(vp==L){
vp=-1;
j=L;
}}}}
/* for(int o=0;o<L;o++){
for(int u=0;u<L;u++) printf(" %5d",ptr[L*o+u]);
printf("\n");}
printf("%d and %d\n",vp,hp);*/
//dktif(vp!=-1) vp=0;
//if(hp!=-1) hp=0;
//if(vp+hp==-2) pp[2][i]++;
//if(vp==-1) pp[0][i]++;
if(vp+hp<0) pp[1][i]++;
//if(vp+hp==-1) pp[3][i]++;
}}
int findroot(int i,int ptr[]){
if (ptr[i]<0) return i;
return ptr[i] = findroot(ptr[i],ptr);
}
mt19937ar.c
/*
A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.
Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).
Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)
*/
#include <stdio.h>
/* Period parameters */
#define N 624
#define M 397
#define MATRIX_A 0x9908b0dfUL /* constant vector a */
#define UPPER_MASK 0x80000000UL /* most significant w-r bits */
#define LOWER_MASK 0x7fffffffUL /* least significant r bits */
static unsigned long mt[N]; /* the array for the state vector */
static int mti=N+1; /* mti==N+1 means mt[N] is not initialized */
/* initializes mt[N] with a seed */
void init_genrand(unsigned long s)
{
mt[0]= s & 0xffffffffUL;
for (mti=1; mti<N; mti++) {
mt[mti] =
(1812433253UL * (mt[mti-1] ^ (mt[mti-1] >> 30)) + mti);
/* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
/* In the previous versions, MSBs of the seed affect */
/* only MSBs of the array mt[]. */
/* 2002/01/09 modified by Makoto Matsumoto */
mt[mti] &= 0xffffffffUL;
/* for >32 bit machines */
}
}
/* initialize by an array with array-length */
/* init_key is the array for initializing keys */
/* key_length is its length */
/* slight change for C++, 2004/2/26 */
void init_by_array(unsigned long init_key[], int key_length)
{
int i, j, k;
init_genrand(19650218UL);
i=1; j=0;
k = (N>key_length ? N : key_length);
for (; k; k--) {
mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1664525UL))
+ init_key[j] + j; /* non linear */
mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */
i++; j++;
if (i>=N) { mt[0] = mt[N-1]; i=1; }
if (j>=key_length) j=0;
}
for (k=N-1; k; k--) {
mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1566083941UL))
- i; /* non linear */
mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */
i++;
if (i>=N) { mt[0] = mt[N-1]; i=1; }
}
mt[0] = 0x80000000UL; /* MSB is 1; assuring non-zero initial array */
}
/* generates a random number on [0,0xffffffff]-interval */
unsigned long genrand_int32(void)
{
unsigned long y;
static unsigned long mag01[2]={0x0UL, MATRIX_A};
/* mag01[x] = x * MATRIX_A for x=0,1 */
if (mti >= N) { /* generate N words at one time */
int kk;
if (mti == N+1) /* if init_genrand() has not been called, */
init_genrand(5489UL); /* a default initial seed is used */
for (kk=0;kk<N-M;kk++) {
y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);
mt[kk] = mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1UL];
}
for (;kk<N-1;kk++) {
y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);
mt[kk] = mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1UL];
}
y = (mt[N-1]&UPPER_MASK)|(mt[0]&LOWER_MASK);
mt[N-1] = mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1UL];
mti = 0;
}
y = mt[mti++];
/* Tempering */
y ^= (y >> 11);
y ^= (y << 7) & 0x9d2c5680UL;
y ^= (y << 15) & 0xefc60000UL;
y ^= (y >> 18);
return y;
}
/* generates a random number on [0,0x7fffffff]-interval */
long genrand_int31(void)
{
return (long)(genrand_int32()>>1);
}
/* generates a random number on [0,1]-real-interval */
double genrand_real1(void)
{
return genrand_int32()*(1.0/4294967295.0);
/* divided by 2^32-1 */
}
/* generates a random number on [0,1)-real-interval */
double genrand_real2(void)
{
return genrand_int32()*(1.0/4294967296.0);
/* divided by 2^32 */
}
/* generates a random number on (0,1)-real-interval */
double genrand_real3(void)
{
return (((double)genrand_int32()) + 0.5)*(1.0/4294967296.0);
/* divided by 2^32 */
}
/* generates a random number on [0,1) with 53-bit resolution*/
double genrand_res53(void)
{
unsigned long a=genrand_int32()>>5, b=genrand_int32()>>6;
return(a*67108864.0+b)*(1.0/9007199254740992.0);
}
/* These real versions are due to Isaku Wada, 2002/01/09 added */
/*
int main(void)
{
int i;
unsigned long init[4]={0x123, 0x234, 0x345, 0x456}, length=4;
init_by_array(init, length);
printf("1000 outputs of genrand_int32()\n");
for (i=0; i<1000; i++) {
printf("%10lu ", genrand_int32());
if (i%5==4) printf("\n");
}
printf("\n1000 outputs of genrand_real2()\n");
for (i=0; i<1000; i++) {
printf("%10.8f ", genrand_real2());
if (i%5==4) printf("\n");
}
return 0;
}
*/
반응형
'Programing Language > C, C++' 카테고리의 다른 글
C언어 프로파일하기, gcc profiler gprof (6) | 2017.03.30 |
---|